Alane Suhr: Research Statement

I build systems that use natural language to interact with human users. My research has two central goals:
(a) to design models that reason about language within world and interaction context, and (b) to develop
learning algorithms for acquiring language in interaction with users. Such systems have enormous potential
impact; they will enable non-experts to access complex systems such as robots and databases, and will learn
from and teach people new skills and concepts.

Natural language is intrinsically interactive and situated. We

use language to communicate with each other about our shared Goal: build a radio
world (e.g., by making references to our environment) and to

relay our intents (e.g., by making requests to one another). For 'ﬁ
example, consider an interaction where a human and a robot T User Can you build the amp while T

collaborate to build a radio (Figure 1). Both participants use add the volume control?
language to delegate tasks, make corrections, ask for clarifi- 2 System Sure, which speaker do you
cations, and exchange information about their progress. How- want me to use?

- . . 3 User The smallest one in the red bin
ever, the majority of research in NLP focuses on static texts, to the right.
at times with accompanying context (e.g., an image), but of- 4 System grasps a speaker
ten in isolation. My work expands the perspective of the field 5 System Do you mean this one?
to consider the full complexity of situated language interac- | 6 User No, that’s the largest one. I
tions. This reveals both challenges and opportunities that sig- want the smallest.

7 System derives a learning signal and

nificantly alter the language problem. applies it to model parameters

The first set of challenges 1s n.lodehng hqw language depends §  Sysem Did yo'u' T T s
on the context of the interaction. Participants should under- trol? T think T have the poten-
stand and generate references to the world around them (e.g., tiometer you need.

“the smallest one in the red bin to the right” in utterance 3 of | 9 User Oh, there it is! Thanks.
Figure 1), and should be able to recall and refer to the inter- Figure 1: Illustration of a natural language in-
action history (e.g., the system referring to the user’s current teraction between a user and a robot working
task in utterance 8). Interactive systems must efficiently rea- together to build a radio.

son about interaction context, including visual observations of the world and the history of the interaction,
both linguistic and non-linguistic. 1 designed several of the first systems that use interaction history to
map language to expressive, executable representations, including SQL (Suhr et al., 2018) and low-level
actions (Suhr and Artzi, 2018). My work laid the foundation for recent progress in vision-dependent lan-
guage reasoning by creating benchmarks that require systems to understand how references to sets, counts,
comparisons, and other phenomena arise in images (Suhr et al., 2017, 2019b; Chen et al., 2019).

Learning is of equal importance to modeling in this scenario, where it presents both open problems and
new opportunities. The dynamic nature of interaction reveals a key learning challenge not addressed by
contemporary NLP approaches. Existing approaches predominantly rely on learning from static datasets,
e.g., recordings of interactions between two people. However, the language and observations a system
encounters during interaction are highly dependent on the dynamics of that interaction. For example, if the
system struggles to complete a high-level task requested by the user, the user may adapt by describing the
task in a sequence of low-level steps, or may simply decide to do it themselves, and delegate other tasks
to the system. This dependence between the type of language seen and the system’s capabilities results in
a constantly changing data distribution. Static data cannot provide the necessary learning signal to handle
such dynamic data. However, the interaction itself provides natural opportunities for learning, allowing
users to shape system behavior via feedback without disrupting the interaction. For example, in utterances
3-7 of Figure 1, the system misunderstands the meaning of “smallest”, and the user’s correction provides a
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learning signal that is used to update the model. I study this problem by building research platforms, such
as CerealBar, a collaborative game environment where two players coordinate using natural language (Suhr
et al., 2019a). We have used CerealBar to analyze language change in interactions (Effenberger et al.,
2021), and build systems that follow instructions (Suhr et al., 2019a) and continually learn from interaction
to generate instructions (Kojima et al., 2021).

1 Learning and Using Language in Collaborative Interactions

People use natural language as a collaborative instrument to
coordinate acting together in the world. However, most NLP
research does not account for this collaborative aspect, ab-
stracting over important complexities of the problem and miss-
ing opportunities to aid both interpretation and learning. A
significant obstacle to studying this problem is creating situ-
ated, task-oriented, and collaborative scenarios that emphasize
natural language interaction. I addressed this by creating Ce-

realBar, a collaborative language-based 3D' game where tWO [ urm left and head toward the yellow hearts,
players complete shared tasks (e.g., collecting sets of cards), but don’t pick them up yet. I'll get the next
using language to coordinate their actions (Suhr et al., 2019a). card first.

2 Okay, pick up yellow hearts and run past me
CerealBar is a full-fledged game implemented from scratch toward the bush sticking out, on the oppo-
in a professional game development environment. This en- site side is 3 green stars

ables large-scale data collection of human interaction data Figure 2: A snapshot from an interaction in Ce-
via crowdsourcing, and deployment and training of language- realBar. Players coordinate by writing and fol-
. c e . . . lowing instructions.

using systems in live interactions with human users. In a series

of papers, we showed how the CerealBar data allows us to study language in a way previously not possible,
and how it provides an effective platform to train language-using models through interaction with users. For
example, previous work found that as people form language conventions over time, their sentences become
simpler (Clark and Wilkes-Gibbs, 1986). We showed that CerealBar reveals a more nuanced evolution: as
conventions form, instructors adapt to relay more complex tasks by using more complex sentences (Effen-
berger et al., 2021). This illustrates the importance of developing more expressive scenarios like CerealBar.

With CerealBar, we studied instruction following in a way previously not explored. The collaborative na-
ture of CerealBar brings about more flexible instruction giving: if a system executing an instruction fails,
the human giving the instructions can rephrase, simplify the task, or even decide to do the task themselves
and delegate simpler ones to the system. We showed that a neural model can effectively learn to follow
instructions in such scenarios, operating alongside human users (Suhr et al., 2019a). A key challenge was
using static data from recorded human-human interactions, which does not reflect the dynamics of system
failure and recovery. While full-fledged reinforcement learning is not possible using such static data, we
showed that there is an effective middle ground. We introduced a learning algorithm that combines super-
vised learning from recorded interactions with as much self-experience as possible without deviating too
much from the recordings. This method uses the static data to learn between-instruction error recovery.

Most recently, together with collaborators, we used CerealBar to seamlessly incorporate learning into in-
teraction (Kojima et al., 2021). Interactions are replete with implicit learning signals, which existing work
does not take advantage of, relying instead on static datasets that are both expensive to collect and not fully
representative of the interaction dynamics. We studied the problem of learning to generate instructions by
observing human behavior. A system communicates an internal intent in the instructions it gives to human
users. Comparing the user’s execution of an instruction with this internal intent provides a signal about
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1 show me flights from seattle to boston next monday
(SELECT DISTINCT flight.flight_.id FROM flight WHERE (flight.from_airport IN ... (SELECT
city.city_.code FROM city WHERE city.city_-name = ’SEATTLE’))) AND (flight.to_airport
IN ... (SELECT city.city-code FROM city WHERE city.city-name = ’BOSTON’))) AND
(flight.flight_days IN ... (SELECT date_day.day.-name FROM date._day date_day.month_number = 2
AND date_day.day-number = 8))));

2 onamerican airlines

(SELECT DISTINCT flight.flight_id FROM flight WHERE (flight.airline_code = ’"AA’) AND

(flight.fromairport IN ... (SELECT city.city.code FROM city WHERE city.city-name = ’SEAT
TLE’))) AND (flight.to_airport IN ... (SELECT city.city.code FROM city WHERE city.city_-name =
"BOSTON’))) AND (flight.flight_days IN ... (SELECT date._day.day-name FROM date_day WHERE AND
date_day.month_-number = 2 AND date_day.day-number = 8))));

Figure 3: The first two utterances of an interaction between a user and a natural language travel planning system. Each
user request is mapped to a SQL query. Highlighted SQL segments arise from implicit dependency on interaction
history, rather than the current utterance.

the quality of the communication (i.e., the generated instruction). We designed a contextual bandit learning
method that uses this signal to continually train a language generation system through interaction with users;
as the system interacts with users, it becomes better and better at communicating its intent.

2 Learning to Reason about Interaction History to Resolve Meaning

The common approach for mapping language to formal meaning representations, at the time I started study-
ing this problem in 2017, was to use handcrafted, linguistically-inspired representations such as lambda
calculus (e.g., Zettlemoyer and Collins, 2007). The rationale behind this approach is simple: targeting a
representation that is relatively close to natural language, but still formal, simplifies the learning problem.
However, there are multiple drawbacks to this approach. The design process is labor-intensive, and it of-
ten implicitly incorporates latent assumptions that limit coverage of language phenomena. Recovering these
symbolic representations requires careful search over a large combinatorial space, and the output representa-
tions are often not executable, requiring an additional step to translate them to actual system representations
or actions. This problem is further exacerbated in interactive scenarios, where hand-crafted representations
must also account for all the different ways that an utterance’s meaning can depend on the interaction history.
In a series of papers, we showed that learning to directly map from language to system representations in
interactive systems does not only obviate the design process, it also results in better systems. The repeating
theme of this line of work is trading off representation design with learning challenges.

In Suhr et al. (2018), we built the first system that directly maps user requests to executable SQL queries in
interaction, a task that was previously addressed by using non-executable linguistic representations (Zettle-
moyer and Collins, 2009). A key challenge is that much of the recovered SQL comes from the interaction
history, and not from the utterance itself. Figure 3 illustrates this. While the request “on american airlines”
does not explicitly mention a desired city or date, its meaning implicitly depends on the previous utterance,
which directly specifies these search parameters. We designed a neural network that does this in two ways: it
maintains an implicit representation of the interaction as it progresses, and it explicitly copies segments from
previously-generated queries. Our approach is not only effective in recovering history-dependent meaning,
but also more efficient, as generation decisions from previous queries can be copied as complete segments.
This work received an Outstanding Paper Award at NAACL 2018, and demonstrated the feasibility of
using system-provided executable representations for mapping language to meaning in interaction. As a
result, this area has received increasing attention in recent years, with the introduction of new datasets and
models (e.g., Yu et al., 2019; Zhang et al., 2019). An exciting focus of this recent work is cross-database
generalization, where text-to-SQL systems are tested on databases and domains that were not seen during
training. In Suhr et al. (2020), I characterized the challenges this new scenario raises, and re-formulated
existing benchmarks to better reflect them.
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Of course, not all systems utilize a symbolic compositional representation like SQL. When systems operate
with lower-level actions (e.g., a robotic agent that moves in the world), the gap between language and low-
level actions is much larger. We showed that even then, it is better to map language directly to low-level
actions without going through intermediate symbolic representations (Suhr and Artzi, 2018). We studied
the problem of following a sequence of instructions in an interaction. We built a neural network that maps
directly from language and interaction history to low-level actions, trading-off handcrafted representation
design with learning challenges. We introduced a contextual bandit learning algorithm that uses weak goal-
state annotations only, and overcomes exploration challenges that arise in large action spaces. Our method
avoids the problem of representation design, and outperforms prior work dependent on symbolic represen-
tations work by up to 25 accuracy points. It is also competitive with supervised learning, which has stronger
annotation requirements.

3 Reasoning about Language in Situated Environments

Language is an expressive medium for describing visual and
spatial environments, including images. It can precisely de-
scribe complex and compositional structure in images, includ-
ing sets, spatial relations, and quantities. These kind of rea-
soning skills are critical for intelligent systems that operate in
the real world. However, datasets for language-and-vision tra-
ditionally focus on shallow types of reasoning that require lit-
tle more than object recognition, and include spurious biases
that make them unreliable for model evaluation (Goyal et al.,
2017). A key challenge is collecting data that includes com-
plex images with natural language annotations. In a series of | All dogs are corgis with upright ears, and one
papers, I defined procedures for collecting large amounts of | ""“¢¢ Conmmsaitll::itﬂt;:ﬁ;f 'emmy real corgis
high-quality language-and-vision data, which resulted in sev- s

. .. . Figure 4: Examples from NLVR (top) and
eral datasets that require complex, compositional reasoning. NLVR?2 (bottom). The task is to classify if the

statement is true or false with respect to the im-
age pair.

There is a box with 2 triangles of same color
nearly touching each other.

Natural Language for Visual Reasoning (NLVR; Suhr et al.,
2017) includes synthetically generated images paired with nat-
ural language descriptions, where the task is to determine whether a sentence is true about an image (Fig-
ure 4, top). We defined a new data collection process that results in complex, compositional language that
requires reasoning about counts, sets, spatial relations, comparisons, and more. The key idea is to generate
images that require reasoning over groups of objects, and to ask crowdworkers to write sentences that implic-
itly contrast images. Our crowdsourcing procedure has influenced creation of several recent datasets (e.g.,
Gardner et al., 2020; Liu et al., 2021). This work received the Best Resource Paper Award at ACL 2017.

In Suhr et al. (2019b), we scaled the NLVR process to real photographs from the web to create the NLVR2
dataset (Figure 4, bottom). Without the ability to generate images, the key challenge was finding a large
number of images that contain sets, quantities, and spatial relations to refer to. NLVR2 has been instrumental
in recent progress towards stronger vision-and-language systems, especially as a testbed to evaluate the first
large pre-trained multimodal models (Tan and Bansal, 2019; Chen et al., 2020). NLVR2 remains influential,
as it is now used as a standard benchmark for evaluating such models.

We also scaled this line of work to systems that follow natural language instructions in visual environments.
Together with collaborators, we developed the Touchdown task and dataset (Chen et al., 2019). Touchdown
requires systems to follow long instructions, identify objects, and reason about complex spatial relations in
a realistic urban environment based on the Google Street View platform.
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4 Future work

My research goal is to build systems that use natural language to interact with human users, in a safe,
transparent, and interpretable way. Dynamic interaction dramatically complicates the language problem,
but also provides opportunities for learning from implicit and explicit feedback signals, opening the way for
systems that continually improve and adapt. Below are some of the research directions I plan to pursue.

Learning from Interaction Feedback Interactions are rich in implicit and explicit feedback signals that we
can use to train better models. Equally important is that human users expect systems to learn and adapt in in-
teraction, because it is a critical part of their own interaction with others. I will take inspiration from theories
of child language acquisition to design new learning algorithms that make the most of interaction feedback.
Children learn language in interaction by observing and predicting interaction dynamics, with very little
explicit feedback (Tomasello, 1992). This process eventually builds to a point where word learning accel-
erates rapidly (Goldfield and Reznick, 1990). In designing these algorithms, I will consider questions that
have been debated at length in linguistics and cognitive science about innateness, action, and learning dur-
ing language acquisition. Building systems that acquire language requires investigating similar questions,
including: what inductive biases must our models have before they can effectively learn from interaction?
How should they act so that they can get the most informative feedback, while remaining cooperative and
useful? How should this feedback be transformed into a learning signal that can effectively update a model?

Rapid System Personalization People in natural language interactions show rapid partner-specific adap-
tation and convention formation (Clark and Wilkes-Gibbs, 1986), and the same is not only expected from
systems, but required for efficient interaction. For example, in goal-directed interactions, systems should use
different jargon depending on the domain expertise of the user. I will address this problem by maintaining
and mixing models of both general and partner-specific interaction (Hawkins et al., 2021). A key challenge
is sample complexity: it is infeasible to learn a model of each new user from scratch given only a short
interaction with them. I will address this challenge by designing meta-learning methods that simultaneously
learn both user-specific models and strategies for quickly adapting to users in general (Zhu et al., 2021).

Language and Beyond for Natural Interaction The complex facets of human language interaction — in-
cluding bidirectional conversation, speech and gesture, and complex visual situations — support more natural
and streamlined interaction, but have been widely understudied in interaction. Two barriers are responsible
for this: the difficulty of mapping all the different signals to designed meaning representations and the lack
of rich interaction platforms that display all facets. My work on representation learning within interactions
and visual domains places me in an ideal position to incorporate further communication signals. I will ad-
dress the challenge of limited language interaction data by incorporating pre-trained multimodal models into
my approach. Drawing on my experience with CerealBar, I will design immersive, engaging, extensible,
and scalable platforms to drive this research via large-scale studies.

Safe and Interpretable Systems Systems that participate in and learn from interaction must be transparent,
interpretable, and safe to deploy. Because these systems learn from users, we must ensure that what they
learn (and thus, what they act on) is not harmful. Systems should be able to provide verifiable and easy-to-
understand explanations about how they learn and act. I will explore how modular neural networks (Andreas
et al., 2016) and program synthesis (e.g., Wong et al., 2021) can support this by automatically learning
libraries of executable, high-level, and domain-specific functions that have direct correspondence with lan-
guage. This will support interpretability by providing users with derivations of how language is mapped to
low-level actions via compositions of discrete library functions. In addition, users can quickly debug and
adjust undesirable or incorrect model behavior by analyzing and modifying these learned functions.
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